Atlas DAQ

User Guide of the Test Manager
for the
ATLAS DAQ Prototype -1

Authors :R.Hart
Keywords : DAQ, Test Manager, test, prototype -1, user guide

Abstract

This note represents the user guide for the Test Manager (TM) in its current state. It describes how
to use the different possibilities the TM offers. Not only the usage of the TM is handled, also a
description is given how to make a test and how to store it in the repository.

NoteNumber : 112
Version : 2.0
Date : October 13 1999
Reference : http://atddoc.cern.ch/Atlas/Notes/112/Note112-1.html

1 Introduction

The TM is an ATLAS back-end service to use tests in an organized way. The tests themselves
have to be written by the hardware/software experts and are not the responsibility of the TM.
The implementation of the TM is based on the high-level design [1] and is described in the
implementation report [2]. It consists basically of two classes. The TM_Repository class which
deals with the retrieval of the tests from the repository and the TM_Client class, which is the
only object visible to the user. Therefore, this user guide will be concentrated on the
TM_Client class. The base include file for the TM is <tmgr/tmgr . h>.

2 TM_Client

There are three aspects which are important if we use an instance of the TM_Client class:

1. Partition: Although the TM is partition independent an instance of a TM_Client class has
to run in a partition. If not given, the default partition (TMGR_DFLT) is chosen.

2. Repository: The TM_Client instance needs a repository containing a set of tests. This
repository argument is passed as a single file name, which has to comply to the rules of the
federated database as described in [3]. If no data file is given, a default one is used, contain-
ing a set of tests known as the demo test-suite, which is meant to show the capabilities of the
TM.

3. Call-back: The user may supply a call-back routine, which is invoked each time an asyn-
chronously started test finishes. Only one call-back routine per TM_Client instance is possi-
ble. It is supplied at construction.

Only one instance of a TM_Client per process is allowed. Creating a second instance yields the
following error message:

TM_Client: only ONE instance allowed
2.1 Constructors
The TM_Client class provides 2 constructors:

2.1.1 Basic constructor

Synopsis: TM_Client();

Creates an instance in the default partition, uses the demo test-suite repository and has no
call-back routine.

2.1.2 General constructor

Synopsis:

TM_Client(const char *partition,
const char repository,
unsigned long callbackptr,
void *callbackparam = 0);

i

Creates an instance in the given partition and uses the repository argument as file of a fed-
erated database. If partition is 0, the default is used. If repository is 0, the demo
test-suite is used. If callbackptr is 0, no call-back is supported. The callback-
param can be used freely by the user and is passed back as argument when the call-back
is invoked. The syntax of the user supplied call-back routine is as follows:

void callBack(RWCString handle, TestResult result, void *param);

The handle argument belongs to the test which was previously started by the Start-
TestA method, which returned the same handle. The result argument contains the test
result and the param argument is the user supplied call-back parameter.

2 Interface

This chapter gives an overview of the public methods of the TM_Client class. Several meth-
ods return in a way an error status. Most of them are quite obvious. If not, they are
explained in more detail.

2.2.1 GetStatus

This method should be called after construction to see if something went wrong. A possi-
ble error could be an inconsistent repository. Returns true if ok, false otherwise. Synop-
sis:

RWBoolean GetStatus();

2.2.2 StartTestA

Start a test in asynchronous way, what means it uses the Process Manager (PMG) [4] to
start the process which executes the test. Synopsis:

RWCString StartTestA(RWCString test, // name of test in repository
RWCString host, // host on which test runs
RWCString args, // user supplied arguments
int &errstat); // error status

If the host variable is not set, then the default host as set in the repository is taken. If
both are not set an error occurs (TM_HOST_NOT_SET). The args variable is placed
with the highest priority together with the default parameters found in the repository. If
errstat is TM_SUCCESS, the returned RWCString contains the created process han-
dle as supplied by the PMG system. This handle is passed as argument with the call-back
routine on completion. On failure a NULL handle is returned and the reason can be found
in the errstat variable. Possible reasons are:

TM_SUCCESS: Start of test succeeded.
TM_TEST_NOT_FOUND: Test not found in repository.

TM MACHINE_NOT_FOUND: Host not found in repository.
TM_NO_PROGRAM: No binary for test on selected platform.
TM_HOST_NOT_SET: Host and default host not set.

TM_RM_ NOT_ALLOWED: Refused by Resource Manager.
TM_PMG_ERROR: PMG failed to start process.

The TM_NO_PROGRAM error means that no binary is available for the selected test on
the selected machine. The TM_RM_NOT_ALLOWED error indicates that the test did
not get authorization from the Resource Manager [5].

2.2.3 StartTestS

Start a test in synchronous way, what means it uses the Process Manager (PMG) [4] to
start the process which executes the test. Synopsis:

TestResult StartTestS(RWCString test, // name of test in repository
RWCString host, // host on which test runs
RWCString args, // user supplied arguments
int &errstat); // error status

The semantics of the arguments is the same as for the StartTestA method. The list of pos-
sible failures, set in the errstat variable, is also the same. This call blocks until the test
finishes. The result of the test is returned, provided that errstat is TM_SUCCESS.

2.2.4 StopTest

The StopTest method terminates a running test. Only tests which are started by the cur-
rent TM_Client instance can be stopped. Tests initiated by other TM_Client objects can-
not be stopped. The synopsis is:

int StopTest(RWCString handle);

The handle argument has to be one of the previously issued StartTestA calls. The result
of the call is returned and can have the following reasons:

TM_SUCCESS: Stop of test succeeded.
T™ _PMG_ERROR: PMG failed to stop process.
TM_INVALID_HANDLE: Unknown handle.

2.2.5 ListAllTests

A list of available tests from the repository is obtained by the ListAllTests method. The
synopsis is:

test_list ListAllTests();
The test_1ist type is defined as follows:
typedef RWTValSlist<RWCString> test_list;

The method returns a list of RWCString’s which contains the names of the tests.

2.2.6 ListAllMachines

A list of machines from the repository is obtained by the ListAllMachines method. Tests
can only run on machines from this list. The synopsis is:

P

mach_list ListAllMachines();
The mach_11ist type is defined as follows:
typedef RWTValSlist<RWCString> mach_list;

The method returns a list of RWCString’s which contains the names of the machines.

2.2.7 GetTestInfo

The GetTestInfo method retrieves all static information of a particular test from the repos-
itory. The synopsis is:

int GetTestInfo(RWCString test, test_info &info);
The result of the call is returned and can have the following values:

TM_SUCCESS: Information of test retrieved.
TM_TEST_NOT_FOUND: Test not found in repository.

On success the info variable is filled. The test_info type is defined as follows:

typedef struct testinfo
{

RWCString ti_test; // name of test
RWTValSlist<RWCString> ti_authors; // author list
RWCString ti_helplink; // link to help file
RWCString ti_defhost; // default host
RWCString ti_description; // description of test
RWIValSlist<ConfdbComputer: :0S>

ti_programs; // possible platforms

} test_info;

The ti_programs variable is a list of operating systems for which a binary of the test
exists. The meaning of the other elements are straightforward.

2.2.8 GetVarsInfo

The GetVarsInfo method obtains the variable information of a test to be run on a certain
machine. The synopsis is:

int GetVarsInfo(RWCString test, RWCString machine, vars_info &info);

The result of the call is returned and can have the following values:

TM_SUCCESS: Information of test and machine retrieved.
TM_TEST_NOT_FOUND: Test not found in repository.
TM_MACHINE_NOT_FOUND: Machine not found in repository.
TM_NO_PROGRAM: No binary for test on selected platform.

The TM_NO_PROGRAM error means that no binary program is available for the
selected test and computer.

On success the info variable is filled. The vars_info type is defined as follows:

typedef struct varsinfo

{

RWCString vi_executable; // name of binary
RWCString vi_defparams; // default parameters
RWCString vi_environment; // environment string
RWCString vi_machine; // DNS name of machine

ConfdbComputer: :08

} vars_info;

2.2.9 GetHistory

vi_os;
ConfdbComputer: :Type vi_type;

// platform
// type of machine

Each TM_Client interface maintains a list called the Legend. It contains information of
each test which was successfully launched. This implies that the list continues to grow.
The list can be obtained by the GetHistory method. The synopsis is:

test_log GetHistory():

On construction the Legend is empty. Each successful call of StartTestA or StartTestS
adds an element to the list. The contents of the elements are maintained by an internal

call-back routine.

The test_log type is defined as follows:

typedef RWTValSlist<test_data> test_log;

The list contains items of type test_data, which is defined as follows:

typedef struct testdata
{

unsigned long td_tid;
RWCString td_handle;
RWCString td_test;
RWCString td_host;
RWCString td_args;
TestState td_state;
RWT ime td_start;
RWT ime td_stop;
TestResult td_result;
} test_data;

2.2.10IsSyncBusy

/7
/7
/7

/7
/7

/7
/7

test-ID number

handle of the started test
name of started test

host on which test runs
supplied arguments
running, stopped, ready
start time of test

stop time of test

POSIX 1003.3 result value

This method returns true if the TM_Client object is performing an StartTestS call and
waiting for the result of a test. Returns false otherwise. In principle it should be impossi-
ble to get out of the blocking StartTestS call. If however, a user manages to get out of it,
for instance by means of an IPC alarm or input handler, then this method could be helpful
to see if a StartTestS call is active. The synopsis is:

RWBoolean IsSyncBusy();

T,

.

e

2.2.11 GetLastPmgStatus

If a TM_Client method yields a TM_PMG_ERROR, then the actual value of the PMG
error is returned by this method. The synopsis is:

int GetLastPmgStatus();

3 TM_ Repository

The current implementation of the TM_Repository is based on the Software and Configuration
view of the ConfigDB [6] as shown in figure 1. Only the classes and attributes relevant for the
TM_Repository are visualized. The main idea of this scheme is that a test is a kind of applica-
tion. The GetTestInfo and GetVarsInfo methods of the TM_ Client class use the back-end Soft-
ware Data Access Library (DAL) [3] to retrieve their information from the repository.

Figure 1: Current Object model of the TM_Repository.

SW_Object Program

OsType: enum
ExecutableFile: string
ImplementedBy DefaultParams: string

Name: string 1+
Description: string
Authors: list_of string
HelpLink: string
DefaultParams: string

eedsEnvironment

Environment
SWObject NeedsEnvironment Variable: string NeedsEnvironment
’—. Value: string Partition
.. ; DefaultParams: strin
Application b Con/ains 8
Name: string
Parameters: string . Computer
UseAllParameters: bool RunsOny~ Name: sivin OQefaultHost
UseAllEnvironment: bool ~) g
OsType: enum

A general comment about the name attribute of several classes; each object has an ID, imple-
mented as string, which in some cases is used instead of the name attribute. The following list
summarizes the meaning of the classes:

« Partition: Although this class is irrelevant for the TM_Repository, an instance of this
class has to be the present, because it is the entry point of the DAL.

» Computer: A test can only run on a machine if the corresponding Computer object is
present in the repository. The ID of the object is used as key and not the name attribute!
The name attribute must contain the full DNS domain, which is used by the PMG to
select the right agent. For instance: in the demo test-suite there is a computer called
sunatdaqg01 with the following name attribute: sunatdag0l.cern.ch. The
OsType (solaris, lynx, linux, etc.) is used to select the corresponding binary (Program
object). The GetVarsInfo also returns the type (Workstation, CPU Board or /O CPU)
attribute, which is meaningless for the TM.

« Application: In fact the test! Like the Computer class the ID is used as key to select the
test. The name attribute is not used. The UseAllParameters and UseAllEnvironment
attributes are important for the aggregation of the parameter list and environment string.

» SW_Object: Each application (read test) is described by a single SW_Object, which
delivers some static information like the list of authors, a helplink and a description. An
important feature of this object that it points to a list of binaries (Programs). For each
platform (OS type) at most one instance may exist.

» Program: This class contains the name of the binary belonging to the test. The name con-
vention for the executable is that of the PMG. Thus, the ExecutableFile attribute starting
with a ‘/° is considered to be absolute. If not, the current PMG will look in the “bin”
directory of the proper platform and from the selected SRT release.

» Environment: The Partition, Application, SW_Object and Program class may have a set
of environment variables. The variable and value attributes speak for themselves.

Most elements obtained by the GetTestInfo and GetVarsInfo methods are retrieved directly
from the objects mentioned above. However, a couple of elements are obtained in a different
way.

Default Host

To select the default computer the following algorithm is used. The RunsOn computer
(pointed by the Application object) is selected first. If not set, the DefaultHost computer
(pointed by the Partition object) is used. If this one is also not set, the default host is set to 0.
In general, the RunsOn computer is the default for the test, the DefaultHost computer is the
default for the entire repository.

Default Parameters
The default parameters are obtained from the repository according to the “Application com-
mand line” specification as described in the DAL User’s Guide [3]. The UseAllParameters

attribute of the Application class influences the result. Note that the user supplied argu-
ments are placed at the end of the command line, thus having the highest priority.

Environment
The environment in which the process should run, is obtained according to the “Application
Environment” description as described in the DAL User’s Guide [3]. The UseAllEnviron-
ment attribute of the Application class influences the result.

3.1 Demo test-suite

The demo test-suite contains a couple of tests, named after an exotic cocktail, which all exe-
cutes the tmgr _sleep program. The synopsis of this program is as follows:

tmgr_sleep [-t delta] [-E exit]

Without arguments this program sleeps for 30 seconds and exits with value TmPass. Argu-
ment -t sets the duration of the sleep and the - E argument sets the exit (result) value.

4 Building and Running a client program

A user program, written in C++, which uses the TM has to include <tmgr/tmgr.h>. It contains
all definitions, structures and type definitions mentioned in the previous chapters. In order to
compile and link your source properly, look at the ATLAS DAQ Software Development Envi-
ronment [7] on the web. To link your program, the following list of libraries has to be
included:

~lvwa

-ltmgr -lpmg -lis -lipc -lilu-c++ -1ilu -lswdal -lconfdb -loks -lrwtool

Furthermore, the @socket-1ibs@ variable must be added to the previous line. It contains
the platform dependant communication libraries.

In order to execute your program properly, you should modify your LD_LIBRARY_PATH.
Before you can use your program, it needs some support from other components. First of all it
needs a default ipc_server and an ipc_server running in the partition you would like to work in.
Each test is executed by one process, which means that on the host where the process will be
running, a pmg_agent has to run in the same partition. Using the PMG system requires also an
is_server. The following commands have to be started first. Lets assume we use the default
TM partition (TMGR_DFLT). The ipc_server’s and is_server have to run somewhere on an
arbitrary host within the AFS framework. The pmg agent has to run on each machine you
want to execute a test.

bash# ipc_server &

bash# ipc_server -p TMGR_DFLT &

bash# is_server -p TMGR_DFLT -n PMG &
bash# pmg_agent -p TMGR_DFLT &

Some programs may yield a lot of warnings and/or error messages. The general ipc_server
may already run. Ignore the warnings and continue to start the partition dependant ipc_server.
The pmg_agent will complain about a non running MRS server, which can also be ignored.
Other messages may indicate a serious error.

S Utility Programs

The TM provides several utility programs, to make life a little easier. Each utility supports the
[-p partition] argument. If not set, the default partition (TMGR_DFLT) is used. Fur-
thermore, every utility supports the [-d repository] argument. If not set the demo test-
suite is used. Test results and possible errors are printed in a readable form (not a cryptic
number).

5.1 tmgr list

Prints a list of available tests. If the [-m] flag is set, the list of available computers is
printed. Synopsis:

tmgr_list [-m] [-p partition] [-d repository]

5.2 tmgr_info
Print static or variable information about a test. Synopsis:
tmgr_info -T test [-m machine] [-p partition] [-d repository]

If the machine argument is omitted, the static information of the test is printed. The
retrieved test_info structure is printed in a readable form. If the machine argument is
set, the variable information (vars_info structure) is obtained and printed in a readable
form.

5.3 tmgr exec
Execute a test synchronously. Synopsis:
tmgr_exec ~T test [-m machine] [-A arguments] [-p partition] [-d repository]

If the machine argument is omitted, the default host is used. The user supplied arguments
are placed behind the default parameters. This program blocks until the test finishes. On
success it prints the result of the test.

5.4 tmgr_try

The tmgr_try program is an interactive program, which shows in a simple way the capabili-
ties of the TM. It is by far the most comprehensive utility. Synopsis:

tmgr_try [-p partition] [-d repository]

After start-up the tmgr try program turns into an interactive mode whereby the user can
issue commands. Answers shown in parentheses are default answers and a simple <CR> is
sufficient to select them. The program recognizes parts of input which makes the answer
unique. The global command quit (or part of it) will stop the program. The program will
prompt the following basic command line:

-<TM>: list, info, start, stop, legenda (list) ?

The default answer to this question is the /ist command. If selected it asks further whether
you want a list of tests (executing the ListAl1lTests method) or a list of machines (exe-
cuting the ListAllMachines method). The tmgr try program gets the selected list and
prints the available tests or machines on standard output. The info command asks whether
you like the static information of a test or combined with a selected computer the variable
information. The GetTestInfo or GetVarsInfo method is executed respectively. The
program produces in a readable format the static or variable information of the test. The
start command will ask you which test you want to execute, on which host and with which
arguments. It also asks whether to start it asynchronously or synchronously. In case of start-
ing a test asynchronously, it also asks how many times you want to start the test. The
returned handle is shown after calling the StartTestA method successfully. An internal
call-back routine of the #mgr try program is invoked each time such a asynchronously
started test finishes and the result of the test is printed. When a test is started in a synchro-
nous way, using the StartTestS method, the flow of the program is blocked until the test

-10 -

finishes. On completion the result of the test is printed. The sfop command executes the
StopTest method. It will ask for a valid handle. Finally the legenda command executes
the GetHistory method. Several layouts are possible, such as: show me a list of success-
fully launched tests, a list of active tests, a list of finished tests or a detailed description of
an individual test.

6 Making a test program

There a two distinct phases to create a test: the first one is to write and compile the program
and the second to store the test in the repository. There are a couple of conditions required for
a proper test program. The most important one is that it has to return a valid test result. This
result is passed by means of the exit status of the program, what implies that a test program
should always finish with a proper exit status. The result of the test has to comply with the
POSIX 1003.3 definition [8] and should be of type TestResult, which is defined in the
general include file of the TM <tmgr/tmgr. h>.

typedef enum tmResult
{

TmPass = TM_PASS,
TmUndef = TM_UNDEF,
TmFail = TM_FAIL,
TmUnResolved = TM_UNRESOLVED,
TmUntested = TM_UNTESTED,
TmUnsupported = TM_UNSUPPORTED

} TestResult;

6.1 Store a test in a repository

The primary link between a test program and repository is the ExecutableFile
attribute of the Program class of figure 1. It should contain the name of the binary. To store
a test or, even more important, to create a repository, requires some knowledge about the
oks_data_editor [9]. The main scheme of figure 1 is found in the following schema file:

/afs/cern.ch/atlas/project/tdag/databases/vl/schemes/DAQ-Confdb.schema

This schema should be loaded when using the oks data_editor. This editor allows you to
create instances of classes and their relationships. According to the DAL’s User Guide [3],
the repository based on the model of figure 1 is split into three files:

1. Hardware Description Data File contains objects of configuration database class
“Computer”.

2. Software Description Data File contains objects of configuration database class “Pro-
gram”, “SW_Object” and “Environment”.

3. Configuration Description Data File contains objects of configuration database class
“Application”, “Configuration”, “DataFile”, “SchemaFile” and their subclasses.

-11 -

The “Configuration Description Data File” is used as the repository file, supplied as argu-
ment to the different utilities ([-d repository]). The other two files are loaded by
means of the “Federated Database” concept. Two “DataFile” objects represent the other two
files and are linked via the “Data” relationship to the “Partition” object (which is a kind of
“Configuration”).

7 References

[1]R.Hart, H.Boterenbrood, W.Heubers, Test Manager design for the ATLAS DAQ Proto-
type-1, Technical Note 066, V3.1, June 19 1998 (URL.: http://atddoc.cern.ch/Atlas/Notes/
066/Note066-1.html).

[2]R Hart, Implementation of the Test Manager for the ATLAS DAQ Prototype-1, Tech-
nical Note 111, V2.0, Oct. 11 1999 (URL:http//atddoc.cern.ch/Atlas/Notes/111/Note111-
1.html).

[3]1.Soloviev, Configuration Databases User’s Guide, Technical Note 135, V1.0, 6 Oct.
1999 (URL: http://atddoc.cern.ch/Atlas/Notes/135/Note135-1.html).

[4]P.Duval, L.Cohen, Users guide for the Process Manager, Technical Note 081, V1.0, 2
Feb. 1998 (URL: http://atddoc.cern.ch/Atlas/Notes/081/Note081-1.html).

[5]1.Alexandrov, V.Iambourenko, R.Jones, V.Kotov, V.Roumiantsev, High-level design of
the Resource Manager, Technical Note 052, V1.2, 12 Feb. 1998 (URL: http://atd-
doc.cern.ch/Atlas/Notes/052/Note052-1.html).

[6]R.Jones, M,Michelotto, A.Patel, 1.Soloviev, S.Wheeler, Design of the Configuration
Databases for ATLAS DAQ Prototype -1, Technical Note 030, V1.1, 26 Jun. 1997
(URL: http://atddoc.cern.ch/Atlas/Notes/030/Note030-1.html).

[7JATLAS DAQ Software Development Environment (URL: http://atddoc.cern.ch/Atlas/
DagSoft/sde/Welcome.html).

[8]JRob Savoye, The DejaGnu Testing Framework for DejaGnu Version 1.3, Jan. 1996
(URL: http://phantom.iweb.net:80/docs/gnu/dejagnu).

[9]1.Soloviev, OKS - Object Kernel System, Technical Note 033, V1.1, 13 Feb. 1998, (URL:
http://atddoc.cern.ch/Atlas/Notes/033/Note033-1.html).

-12 -

