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1 Introduction  
This note presents the high level design for the DAQ–DCS Communication (DDC) software of the 
ATLAS HLT/DAQ/DCS system [1]. The DDC software is intended to be the interface between 
DAQ and DCS and to support all needs of run time information exchange. A general outline of 
those needs is described in [2] and has been formally specified in the User Requirements Document 
[3]. The domain decomposition defined 3 functions the DDC shall provide: 

1) Bi-directional exchange of data like parameters and status values; 

2) Transmission of  DCS messages, like alarms, to DAQ; 

3) Ability for DAQ to issue commands on DCS. 

The functions listed above are independent and will be implemented as separate subsystems. Apart 
from these functions, the DDC may also provide a graphical user interface. 

For the design of the DDC the following prerequisites, based on the URD, are taking into account:  

• The Online software [4] (formerly known as the Back-end) is the interface point for the DDC 
on the DAQ side.   

• The DCS is implemented by a SCADA1 system. The PVSS II system of ETM [5] will be 
utilized for that purpose and its API will be used to connect the DDC. 

• Any manipulation with the physics data is beyond the scope of the DDC software. 

• The DDC uses its own configuration database, containing the information it needs for its 
functionality mentioned above. 

• The partition concept is known to both DAQ and DCS and should be compatible in terms of 
boundaries and locking of resources. Although DDC is not responsible for this demand, it has 
some consequences for the design and chosen implementation. From the DAQ point of view a 
partition is a subset of the experiment capable to run independently. The DCS can be 
partitioned into vertical slices, which control a subsystem of the detector. Such subsystems are 
defined as arbitrary parts of the detector. 

• The DCS is expected to be operational at all times. 
 

Figure 1 presents the basic context diagram of the DDC software. 

 

Figure 1. DDC software context diagram. 
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Inside the context diagram the term subscription is used. Subscription is a way of asynchronous 
reading. The caller gets the initial value and afterwards it will be notified on all updates. 
Each subsystem uses a configuration database to set up itself. It is intended to implement them 
using the ConfDB component [6] of the Online software, but initially the configuration information 
will be placed in a common ASCII file. 

The SCADA system (PVSS II) contains an internal ‘ real-time’  database based on the datapoint2 
concept. These datapoints are accessible by the API of the SCADA system. The PVSS II system 
has also a ‘historical’  database, which is not relevant for the design. Wherever the term SCADA 
database is used in the remainder of the document, the ‘ real-time’  database is meant. Behind the 
SCADA database there are of course the different PVSS applications, responsible for maintaining 
their piece of the database. These applications however are not relevant for the design and therefore 
not shown in the different diagrams and dynamic models. 

 

2 Design of DDC data transfer subsystem 
This chapter describes the basic software architecture to provide the bi-directional exchange of data 
between DAQ and DCS. The subsystem is called the DDC Data Transfer (DDC-DT). The term 
data is regarded as a value belonging to a DAQ or DCS variable (parameter or status). 

The interface point for the DDC-DT on the DAQ side will be the Information Service (IS) [7] 
component from the Online software. The design of DDC-DT subsystem follows the main 
philosophy of the IS: 

No subsystem sends its data directly to other subsystems. Rather, it places them into a common 
repository (Information Service) making those data available for any subsystem that needs them. 

2.1 DDC-DT Class Diagram 

The class diagram of the DDC-DT subsystem is shown in figure 2. 

 

 

    Figure 2. DDC-DT class diagram. 
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The key class of the DDC-DT subsystem is the DtManager class. It inherits the abstract 
API_Manager class of the SCADA’s API, which provides full access - read, write and 
subscription- to the SCADA database. On the DAQ side it uses an instance of the ISInfoReceiver 
class to provide subscription management on the IS. The template class DdcData, inherited from 
IsNamedInfo, represents the parameterized data structure to be used for the data exchange. The 
IsNamedInfo class provides the ability to create, read and write an information object3 of the IS. 
The DtConfig class interfaces the configuration database of the DDC-DT subsystem. 

 

2.2 DDC-DT Dynamic Model 

From the bi-directional exchange of data two distinct use cases can be distinguished.  One is the 
transfer of data from DCS to DAQ, the other from DAQ to DCS. An overview of the collaboration 
between the subsystems participating in the DDC-DT for these two cases is given in figure 3.  

 

 

         Figure 3.  DDC-DT collaboration diagram. 

 

 

In case of transfer of data from DCS to DAQ the DDC-DT subsystem shall go through the 
following steps. 

 

1. Read the configuration database, containing for this purpose a list of DCS variables, which 
should be made available to any DAQ application. 

2. Subscribe each variable from the list inside the SCADA Database. 

3. Get current value, and afterwards all updates, and publish the value to the IS. 

4. From this point any DAQ application is able to monitor the value of a DCS variable. 

 

The above listed sequence is visualized in figure 4. 

 

 

 

                                                           
3 Information is the object which has a name, a type and a value. 
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    Figure 4. DDC-DT sequence diagram (DCS → DAQ data transfer). 

 

 

 

The other use case, sending data from DAQ to DCS, is almost symmetric. The main difference 
between both cases is the fact that the SCADA system is supposed to be available at all times, 
while the DAQ applications are not.  This implies that the SCADA system has not always the 
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the corresponding DAQ application terminates or the data object is removed from the IS. The 
following steps are carried out and visualized in figure 5:  
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Figure 5. DDC-DT sequence diagram (DAQ → DCS data transfer). 
 

 

3 Design of transporting DCS messages to DAQ 
This chapter describes the basic software architecture to provide the transport of DCS messages, 
like alarms, to any DAQ application. The subsystem is called the DDC Message Transport (DDC-
MT. The term message is regarded as a piece of information packed into a string. 

The interface point for the DDC-MT on the DAQ side will be the Message Reporting System 
(MRS) [8]. The design of DDC-MT subsystem follows the main philosophy of MRS:  

No subsystem sends its messages directly to any other subsystems. Instead of that, it sends them 
to a common distributor (Message Reporting System) making those messages available for any 
application, which needs them. 

 

3.1 DDC-MT Class Diagram 

The class diagram of the DDC-DT subsystem is shown in figure 6. 

     Figure 6. DDC-MT class diagram. 
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The MtManager class is the main class of the DDC-MT subsystem. It inherits the abstract 
API_Manager class of the SCADA’s API, which provides the necessary functionality – read and 
subscribe - to the SCADA database. On the DAQ side it uses an instance of the MRSStream class 
to provide the means to inject messages to the MRS. A number of public member operators are 
available for the construction of messages. The DtConfig class interfaces the configuration 
database of the DDC-MT subsystem. The database contains a list of datapoints (variables and 
alarms) to subscribe and format attributes. The format attributes are used to generate the message, 
belonging to a specific datapoint. In terms of PVSS II, an alarm is a specialized datapoint. For the 
design they are regarded as common variables. 

 

3.2 DDC-MT Dynamic Model 

The collaboration diagram of the DDC-MT subsystem is shown in figure 7. 

 

 

  Figure 7. DDC-MT collaboration diagram. 

 

The DDC-MT subsystem shall go through the following steps, which are visualized as sequence 
diagram in figure 8. 
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  Figure 8. DDC-MT sequence diagram (sending DCS messages to DAQ). 
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4.2 DDC-CT Class Diagram 

The class diagram of the DDC-CT subsystem is shown in figure 9. 

 

 

    Figure 9. DDC-CT class diagram 

 

The CtManager is the central class of the DDC-CT subsystem. It inherits the abstract 
API_Manager class of the SCADA’s API, which provides the necessary functionality – write and 
subscribe – to the SCADA database. On the DAQ side it inherits the rc-interface class from the RC 
component. The necessary configuration information is retrieved by means of the CtConfig class. 

 

4.3 DDC-CT Dynamic Model 

The collaboration diagram of the DDC-CT subsystem is shown in figure 10. 

 

  

   Figure 10. DDC-CT Collaboration diagram 
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1) Read the configuration database, containing for this purpose a list of DCS command definitions. 

2) Validate an incoming command and return an error code if the command is not valid or not 
authenticated. 

3) If valid, subscribe the response datapoint, write the command parameters and update the trigger-
datapoint.  

4) The Control Manager activates the appropriate script. 

5) Catch the command result, send it via the RC to the DAQ application and unsubscribe the 
response datapoint. (If result does not return within timeout, an error code is returned.) 

   

Figure 11. DDC-CT sequence diagram.  
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